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Effect of photon counting shot noise on total
internal reflection microscopy†

Fan Cuia and David J. Pineab

Total internal reflection microscopy (TIRM) measures changes in the distance between a colloidal

particle and a transparent substrate by measuring the scattering intensity of the particle illuminated by

an evanescent wave. From the distribution of the recorded separation distances, the height-dependent

effective potential j(z) between the colloidal particle and the substrate can be measured. In this work,

we show that spatial resolution with which TIRM can measure j(z) is limited by the photon counting

statistics of the scattered laser light. We develop a model to evaluate the effect of photon counting

statistics on different potential profiles using Brownian dynamics simulations and experiments. Our

results show that the effect of photon counting statistics depends on spatial gradients qj/qz of the

potential, with the result that sharp features tend to be significantly blurred. We further establish the

critical role of photon counting statistics and the intensity integration time t in TIRM measurements,

which is a trade-off between narrowing the width of the photon counting distribution and capturing the

instantaneous position of the probe particle.

1 Introduction

Total internal reflection microscopy1 (TIRM) is a powerful
method for measuring the microscopic interactions of colloidal
particles in a liquid suspension. Since its development some 30
years ago,2 it has been used to measure various colloidal
interactions, including screened electrostatic repulsion,1,3

steric repulsion due to grafted or adsorbed polymers,4–6 van
der Waals attraction,4 depletion attraction,7,8 critical Casimir
interactions,9 and interactions of DNA-coated colloids.10 Spa-
tial resolutions as small as 1 nm have been reported.2 As such,
TIRM has become an invaluable tool for understanding colloi-
dal interactions at a microscopic scale.

In spite of TIRM’s long and enduring use, the effects of
photon counting statistics, often called shot noise, on TIRM
measurements of colloidal interaction potentials have not been
fully worked out. While shot noise has been considered for the
special case of a particle confined by optical tweezers in an
evanescent field11,12 and for microrheology measurements in
an evanescent field,13 in conventional TIRM measurements,
shot noise is generally regarded as insignificant without further
detailed consideration.14,15 Indeed, shot noise can often be
ignored when measuring potentials with soft features like a

double-layer potential at low ionic strength.14,15 However, as we
show in this paper, shot noise can be the limiting factor when
measuring interactions with short-range potential profiles and
particles with fast dynamics. In this work, we systematically
study the effects of shot noise on TIRM measurements of
interaction potentials and identify the potential profile features
that are most prone to corruption by shot noise. We also
provide the means to quantitatively determine and minimize
how it distorts the measurement of the potential.

Fig. 1 shows a schematic of a typical TIRM experiment and
summarizes the basic experimental setup. The TIRM technique

Fig. 1 TIRM schematic. Laser light enters from the right and is totally
internally reflected at the substrate, launching an exponentially-damped
evanescent wave towards the particle, which is a distance z above the
substrate in a liquid suspension. Light scattered by the particle is collected
by a microscope objective lens and directed toward a photon counter.
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is based on two simple ideas. The first idea is that the probability
that a particle at equilibrium in a liquid suspension is at a height z
above the substrate is given by the Boltzmann distribution

p(z) = Ae�j(z)/kBT , (1)

where j(z) is the effective interaction potential between the
particle and the substrate. Inverting this equation, we obtain
the expression

jðzÞ � jðzrÞ
kBT

¼ ln
pðzrÞ
pðzÞ ; (2)

where we have introduced a reference height zr to eliminate the
normalization factor A that appears in eqn (1). Eqn (2) tells us
that if we can measure the distribution of particle heights p(z)
above the substrate, we can determine the effective interaction
between the particle and the substrate.

The second idea starts with the observation that the evanes-
cent intensity Ie of light totally internally reflected from the
substrate decays exponentially with height above the substrate,
Ie(z) = Ie0exp(�bz), where b�1 is the penetration depth of the
evanescent wave, which is typically in the range of 70–200 nm.
Because the intensity I of the light scattered by the particle is
proportional to the intensity Ie of the evanescent field that is
incident on the particle, the scattered intensity also depends
exponentially on the height of the particle,1,16

I(z) = I0e�bz . (3)

Thus, we see that the scattered intensity is related directly to
the height z of a particle. This gives us a way to determine the
height z of the particle. We note that the exponential form for
the intensity given by eqn (3) is strictly correct only if certain
precautions are taken in the experimental design.17 In what
follows, we assume such precautions have been taken.

The probability P(I)dI that the scattered intensity is between
I and I + dI is the equal to the probability p(z)dz that the particle
is between a height of z and z + dz, and thus are related by

P(I)|dI| = p(z)|dz| . (4)

Solving for p(z) yields,

pðzÞ ¼ PðIÞ dI
dz

����
���� ¼ bPðIÞIðzÞ; (5)

where we have used eqn (3) to evaluate the derivative. Thus, the
probability distribution of heights p(z) appearing in eqn (2)
can be expressed in terms of the probability distribution of
scattered intensities P(I).

In a TIRM experiment, changes in the scattered intensity are
monitored, typically for ten minutes or more, by repeatedly
counting photons over some short interval of time t, the
integration time, typically on the order of milliseconds. From
this chain of measurements, a histogram of scattered intensi-
ties N(I) is constructed, where N(I) is the number of observa-
tions of intensity between I and I + DI. For a sufficiently large
number of measurements N(I) p P(I). Fig. 2a shows such a
histogram obtained from a TIRM measurement of a negatively

charged polystyrene sphere in aqueous suspension above a
negatively charged glass substrate.

Using eqn (5) for p(z), eqn (2) can be rewritten as

jðzÞ � jðzrÞ
kBT

¼ ln
NðIrÞIðzrÞ
NðIÞIðzÞ ; (6)

where P(I) has been replaced by N(I), which is valid if DI is small
and the number of samples N is large. Fig. 2(b) shows the
potential j(z) obtained from the histogram of scattered inten-
sities shown in Fig. 2a.

2 Shot noise

Like most optical measurements, the resolution and accuracy
of TIRM are limited by instrumental noise. The types of noise

Fig. 2 TIRM measurement of the interaction potential for a negatively
charged polystyrene sphere with diameter of 8 mm in 0.5 mM NaCl
aqueous solution above a negatively charged glass substrate. (a) Histogram
of scattered intensities obtained from a TIRM experiment with an integration
time t = 10 ms. (b) Solid circles show the experimentally measured interaction
potential j(z), with the potential minimum height aligned at zr = 133 nm.
A least-square-fit to the data gives a Debye length of k�1 = 12.1 nm and
G = 0.146 pN. Open circles show the potential profile obtained from a
Brownian dynamics simulation using Dt = 0.2 ms as simulation step size with
12.5 million steps and integration time t = 10 ms. A least squares fit gives k�1 =
13.5 nm and G = 0.157 pN. Dotted line shows potential j(z) used as an input
for the simulation with k�1 = 13.7 nm and G = 0.152 pN.
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commonly identified are background scattering, laser power
fluctuations, statistical noise, and photon detection shot
noise.12,14,18–21 In earlier efforts, several methods were devel-
oped to reduce background noise,12,18 including subtraction of
averaged background intensity and applying low-pass filters of
the measured signals. The effect of laser power fluctuations can
usually be kept small19 and managed with improved laser
design.13 In addition, there is the statistical noise associated
with forming the histogram of intensities from a finite number
of measurements.19 This is the source of the deviations from
the theoretical predictions at large z that are visible in Fig. 2.
This source of noise can usually be made negligible by acquir-
ing data for a sufficiently long time period or performing the
same measurements for multiple times.2,19

The implicit assumption in the analysis of TIRM data using
eqn (6) is that there is a one-to-one correspondence between the
scattered intensity and the particle position, which is given by
eqn (3). However, for any measurement of light intensity, there
are intrinsic quantum fluctuations (shot noise) associated with
photon counting. In a typical TIRM experiment, the intensity of
the scattered light is measured by some quantum mechanical
photon counting process, for example, using a photomultiplier
or an avalanche photodiode. Indeed, these are the most sensi-
tive and information-rich methods of detecting the scattered
intensity. In a typical TIRM experiment, the intensity is mea-
sured by counting photons for some integration time interval t,
typically on the order of milliseconds. In this case, the prob-
ability of detecting n photons in a time interval t is given by a
Poisson distribution22

Ptðn; �nÞ ¼ �nn

n!
e��n; (7)

where %n is the average number of photons detected in a time t
for a given constant intensity I. The width of the distribution,

as measured by the square root of the variance, is
ffiffiffi
�n
p

. The finite
width of Pt(n; %n) means that there is an intrinsic uncertainty,
sometimes called shot noise, in any measurement of the
scattered intensity. This means that there will be an intrinsic
uncertainty in the particle height and in the determination of
the effective potential j(z). This limits the resolution with
which TIRM can measure j(z). As we will show, for potentials
that do not vary too rapidly in space, this does not pose a
serious limitation. However, for rapidly-varying potentials, such
as those exhibited by particles with a fairly hard-core repulsion
or a very short-range attraction, it can pose a significant
limitation.

The intensity I that appears in eqn (3)–(6) is the classical
intensity, without shot noise. The units of intensity are arbitrary in
this context, so without loss of generality we can write nc = It and
P(I)dI = P(nc)dnc, where nc is taken to mean the (classical) intensity,
measured in counts per integration time, that would be measured
if there were no shot noise. Thus, we can rewrite eqn (3) as

nc(z) =nc0e�bz . (8)

However, for a given integration time t and classical inten-
sity nc = It, the number of photons n actually measured is

Poisson distributed around nc according to eqn (7) with %n = nc.
This means that the two distribution functions P(n), which is
measured in a standard TIRM experiment, and P(nc), which is
what should be used in eqn (5), are different. In the limit of a
very large number of measurements, two are related by

PðnÞ ¼
X
nc

PðncÞPtðn; ncÞ ¼
X
nc

PðncÞ
nnc
n!
e�nc : (9)

As Pt(n;nc) is peaked around nc with a width
ffiffiffiffiffi
nc
p

, we see that the
measured intensity distribution P(n) is similar to (but distinct
from) a discrete convolution of the classical intensity distribu-
tion P( %n) with the Poisson distribution Pt(n; %n) given by eqn (7).
Thus, any abrupt change in P(nc), which occurs when there is
an abrupt change in j(z), will be rounded by Pt(n;nc) on a scale
given by

ffiffiffiffiffi
nc
p

. This will lead to a blurring in the potential j(z)
measured by TIRM.

The blurring of P(n) relative to P(nc) limits the resolution
with which TIRM can measure a particle’s height z. For a
particle at height z, the average number of photons counted
in a time t is given by eqn (8). Taking the differential of eqn (8),
we obtain

dnc

nc
¼ �bdz: (10)

Setting dnc equal standard deviation of the photon counting
fluctuations � ffiffiffiffiffi

nc
p

; we obtain an expression for the uncertainty
in the measured particle height due to photon shot noise

Dzm � �
b�1ffiffiffiffiffi
nc
p : (11)

According to eqn (11), the estimated error Dzm in the measured
height is the penetration depth b�1 of the evanescent wave
divided by the square root of the average number of photons
counted during the integration time t. It should be noted that
eqn (11) provides a lower limit on the spatial resolution of a
particle’s position that can be inferred from a measurement of
the scattered intensity. In a typical experiment, the maximum
photon counting rate is about 106 cts s�1 and the integration
time is typically about 1 ms, so that the average number
of photons counted nc is about 1000. A typical optical penetra-
tion depth b�1 is about 100 nm. In this case, eqn (11) gives
Dzm B 3 nm.

The fundamental problem with the conventional TIRM
analysis is that eqn (4) is not strictly correct. Because of the
quantum fluctuations associated with photon counting, there
is not a strict one-to-one correspondence between a measure-
ment of the scattered intensity and the particle height z. Thus
I(z) in eqn (6) is not a perfect proxy for particle position as
assumed in eqn (3). Similarly, the N(I) used in eqn (6) is not a
perfect proxy for p(z), as assumed in eqn (4). In what follows, we
explore the consequences of this problem through simulation
and experiment and develop strategies for minimizing and
mitigating the deleterious effects of photon shot noise.
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3 Results
3.1 Brownian dynamics simulations

To evaluate the effects of shot noise on the measured potential
energy profiles, we first numerically simulate the trajectories
of a colloidal particle and then use them to construct the noise-
corrupted scattering intensities. We use the Brownian
dynamics simulation method first described by Sholl and
Prieve.19 A colloid’s Brownian motion in a force field along
the vertical direction can be described using a Langevin equa-
tion:

m
dvðzÞ
dt
¼ �zvðzÞ þ df ðtÞ þ FðzÞ; (12)

where m is the mass of the particle, v(z) is the velocity of the
particle along the vertical direction, z is the friction coefficient,
and F is the force applied on the particle: F = �dj(z)/dz. The
random fluctuating force df (t) accounts for the interactions
of the particle with the fluid in which it is suspended.
This fluctuation has the usual zero mean and delta function
correlation consistent with the fluctuation-dissipation theorem:
hdf (t)i = 0, and hdf (t)df (t0)i = 2zkBTd(t � t0).

From the Langevin equation, Ermak and McCammon23

developed a method for simulating the diffusive behavior of
Brownian particles in a solution, with a displacement equation
given by:

zðtþ DtÞ ¼ zðtÞ þ dD

dz
Dtþ D

kBT
FðzÞDtþ ZðDtÞ; (13)

where D is the particle’s diffusion coefficient, and Z(Dt) is a
Gaussian random displacement with hZi = 0 and hZ2i = 2DDt.

When a particle is close to a surface, as is the case in a
typical TIRM measurement, the mobility of the particle is
hindered compared to its motion in a free-solution, and
depends strongly on the separation distance between the
particle and the surface. When the separation distance is small
(comparable to or smaller than the particle radius r), the close-
wall effect can be taken into account using D(z) = lD0, where D0

is the free diffusion coefficient, and l is a function of g = z/r,
where z is the distance between the surfaces of the substrate
and the sphere. The function l(g) was calculated by Brenner
and is given in the form of a slowly converging infinite series.24

The function is well-approximated by a simplified form using a
regression of the infinite-series results:25

l ¼ 6g2 þ 2g
6g2 þ 9gþ 2

: (14)

Using this expression and eqn (13), we can simulate the
trajectory of a colloid close to a glass wall for any known
force F(z).

3.2 Simulation of double-layer repulsion and gravity

We start by simulating a charge-stabilized polystyrene (PS)
colloidal particle in dynamic equilibrium close to a glass sur-
face in an ionic solution, which corresponds to the experiment
we introduced in Section 2. We assume there are only two
dominant interactions: electrostatic repulsion and gravity.

We disregard other close-range interactions such as van der
Waals forces, which is a valid assumption for systems with low
ionic strength and highly-charged surfaces.1 The screened
electrostatic interaction is modeled by the DLVO theory
using the Derjaguin approximation, which leads to a Yukawa
potential.2,26,27 The total potential j(z) is the sum of the
screened electrostatic interaction and gravity:

j(z) = Be�kz + Gz, (15)

where G is the net buoyant weight of the particle, k�1 is the
Debye length, and

B ¼ 16r

kBTlB

Y
si¼sC ;sG

tanh
1

2
sinh�1

2plBsi
ek

� �� �
:

Here, lB = e2/4pekBT is the Bjerrum length, e is the permittivity
of the solvent, and sC and sG are the surface charge densities of
the colloid and the glass, respectively.

In TIRM measurements, a reference potential height zr is
introduced to eliminate B:

jðzÞ � jðzrÞ
kBT

¼ G

kBTk
e�kðz�zrÞ � 1
h i

þ G

kBT
ðz� zrÞ: (16)

In our experiments, j(zr) and its corresponding reference
position zr are usually set to 0, which is the usual practice with
TIRM experiments as the absolute distance to the substrate and
parameters B are typically unknown. In the simulations,
however, it is helpful to use a reasonable value of B to estimate
the actual position of the colloid. In a 0.5 mM NaCl solution,
B is calculated to be 8.4 � 103kBT for an 8 mm-diameter PS
sphere based on literature values.1

We use eqn (13) to generate the height trajectories zi of an
8 mm PS particle in a 0.5 mM NaCl solution, using a temporal
step size of Dt = 0.2 ms (small enough to capture particle
movement, see Fig. S2 in ESI†) and a total of 12.5 million steps
(corresponding to a physical run time of about 40 minutes). The
particle starting position is taken to be the distance where
the potential reaches its theoretical minimum, zm = 133 nm.
The simulated height trajectories are shown in Fig. S1 (ESI†).

The simulated vertical trajectories are used to generate light
scattering intensity data in multiple steps. First, the mean
number of classical counts nci, uncorrupted by shot noise, is
generated using eqn (3) for each time step in the simulation

nc = DtI0e�bzi, (17)

where I0 is set such that the maximum intensity corresponds to
the typical maximum experimental value of about 106 cts s�1,
which occurs when z is at its point of closest approach to the
substrate. Next, the mean number of counts ncj accumulated
over each integration time interval t is generated by summing
over successive integer number k time steps where t = kDt:

ncj ¼
Xkj

i¼kð j�1Þþ1
nci : (18)

These are the data that are used to construct the P(nc) histogram
of intensities without shot noise. Finally, the sequence of intensity
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data nj with shot noise is constructed by selecting a random
number nj from a Poisson distribution for each ncj:

nj = Pois(ncj) . (19)

These are the data that are used to construct the P(n) histogram
of intensities with shot noise.

As shown in Fig. 2(b), the data for j(z) obtained from the
simulated P(n) agrees well with both the experimental measure-
ment and the analytical calculations from eqn (15), confirming
that our simulation can quantitatively describe experimental
data from TIRM measurements. In fact, for the parameters
used here, the potential j(z) obtained from the simulated P(n)
is statistically indistinguishable from that obtained from P(nc).
Under such circumstances, shot noise poses no problem
for extracting the potential j(z) using TIRM. As we shall see,
however, this is not always the case.

3.3 Effect of shot noise on double-layer repulsion and gravity
potentials

To evaluate the effect of shot noise on the potential profile
obtained from TIRM measurements, we simulate the scattering
intensities using integration times t of 1 and 0.1 ms. For each

value of t, we construct histograms of the simulated scattering
intensities in two ways, one with shot noise, P(n), and the other
without, P(nc). The results are shown in Fig. 3(a) and (b) for t of
1 and 0.1 ms, respectively.

We then calculate the interaction potentials for the two
cases, and compare them with analytical predictions from
eqn (15), as shown in Fig. 3(c) and (d). When t = 1 ms, the
simulated potential is shown in Fig. 3(c) with and without shot
noise are both in good agreement with the ideal analytical
profile. The fitted Debye length from simulations with and
without shot noise are 15.5 nm and 13.9 nm; while the fitted
buoyant weights G are 0.156 pN and 0.157 pN, respectively.
Both are reasonably close to the true values of the Debye length
(13.7 nm) and the buoyant weight (0.152 pN) we input for the
simulation. Indeed, this conclusion could be anticipated from
Fig. 3(a), where the two histograms with and without shot
noise, P(n) and P(nc), are nearly indistinguishable.

On the other hand, the effect of shot noise becomes signi-
ficant when a smaller value of t = 0.1 ms is used. As shown in
Fig. 3d, the potential curve with shot noise is visibly broadened.
Notably, the distortion of the potential profile in Fig. 3(d) is
much more pronounced in the short-range electrostatic

Fig. 3 Scattering intensity histograms from a simulation of an 8.0 mm-diameter PS sphere in 0.5 mM monovalent saline solution with a photon counting
time interval t of (a) 1 ms and (b) 0.1 ms. The solid orange and empty blue bars show histograms P(n) and P(nc) obtained with and without shot noise
included, respectively. The solid black curves show the Poisson distributions when the means in panel (a) are %n = 450 and 880 counts and in panel (b) are
%n = 45 and 88 counts. The widths of the Poisson distributions are indicated by vertical gray lines drawn at n ¼ �n�

ffiffiffi
�n
p

in panels (a) and (b). The potential
curves are calculated with t equal to (c) 1 ms and (d) 0.1 ms. The solid orange and empty blue circles show potential curves obtained with and without
shot noise included, respectively. The dotted lines show the potential curve used in the simulation.
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repulsion region than in the gravity-dominated region. The
broadened shape yields a Debye length of 23.6 nm, significantly
longer than the true Debye length of 13.7 nm. The fitted
buoyant weight G = 0.157 pN is, however, close to the true
value of 0.152 pN.

Two factors play important roles in determining the degree
of distortion of the measured intensity histogram P(n) and the
potential j(z) derived from P(n): (1) the number of counts n per
integration time t and (2) the steepness (spatial gradient qj/qz)
of the potential.

In Fig. 3a and b, we plot the intensity axis as the number of
counts n per integration time t in order to highlight the role
of n in determining the shot noise. Because the maximum
count rate (intensity) is the same in both cases, approximately
106 cts s�1, the number of counts per integration time is a
factor of 10 lower for the case where t = 0.10 ms compared to
the case where t = 1.00 ms. If there were no shot noise
associated with photon counting, both data sets would result
in statistically the same histogram of intensities. This is what is
shown by the histograms of open blue bars in in Fig. 3a and b,
which correspond to the probability distribution P(nc) intro-
duced in eqn (9). Indeed, the potentials j(z) determined from
these two histograms both track the expected result, as shown
by the blue data points in Fig. 3c and d, which follow the dotted
lines indicating the theoretically-defined potential that was
used in the Brownian dynamics simulation.

To emphasize the one-to-one correspondence between the
average counts nc and z, which are related by eqn (8), we include
a second horizontal axis in Fig. 3a and b that gives the values of
z associated with nc axis.

Next, we consider the actual case where there is shot noise
from photon counting. The histograms obtained in this case
are shown as solid orange bars in Fig. 3a and b and correspond
to the P(n), which is what is measured experimentally. In this
case, the histograms for the two integration times of 1.0 ms and
0.1 ms differ dramatically, particularly for the higher intensities
in each plot, which correspond to the smaller values of z where
the potential j(z) is steepest. The differences in the histograms
obtained with and without photon counting shot noise can be
understood by recalling eqn (9):

PðnÞ ¼
X
nc

PðncÞPtðn; ncÞ;

where Pt(n;nc) is the Poisson distribution given by eqn (7).
In Fig. 3a and b, we plot Pt(n;nc) on top of the histograms for
the values of nc corresponding to two values of z: 177 nm and
110 nm. These two values correspond to two different sets of
values for n: 450 and 880 for Fig. 3a, where t = 1.0 ms, and 45
and 88 for Fig. 3b, where t = 0.1 ms.

From Fig. 3a and b, we see that for a given value of n, P(n) is
smeared out over the range spanned by Pt(n;nc), or about � ffiffiffiffiffi

nc
p

.
Note, however, that what matters when comparing the histo-
grams in Fig. 2a and b is not the width of Pt(n;nc) but the

relative width, which is � ffiffiffiffiffi
nc
p

=nc ¼ �nc�1=2. Thus, as illustrated
by Fig. 3a and b, the rounding effect of shot noise on P(n) is
greater when the counts per integration time is smaller.

The other feature that plays an important role in the distor-
tion of P(n) by shot noise is the gradient of the potential.
A steep potential leads to a steep P(nc), which in turn is more
readily rounded by the shot noise distribution Pt(n;nc). This is
evident in Fig. 3b where the width of the noise distribution
Pt(n;nc) is comparable to the width of the change in P(nc) for
n B 88.

For each plot, we pick out two values of particle height %z,
110 nm, and 177 nm, and show using solid black lines the
Poisson distribution for the corresponding value of nc from
eqn (7). These curves give the distribution of values of n that are
measured in a TIRM experiment for a particle at a single height
z. For example, in Fig. 3a, for %z = 177 nm (label A), nc = 450 cts
per integration time, for which the Poisson distribution has a

width of
ffiffiffiffiffi
nc
p ¼

ffiffiffiffiffiffiffiffi
450
p

’ 21. According to eqn (11), this leads to
an uncertainty in z of �4.7 nm, where b�1 = 100 nm. Similarly,
in Fig. 3b, for %z = 177 nm (label A), nc = 45 cts per integration
time, for which the Poisson distribution has a width offfiffiffiffiffi
nc
p ¼

ffiffiffiffiffi
45
p

’ 6:7. According to eqn (11), this leads to an
uncertainty in z of �15 nm, where b�1 = 100 nm. The relative
uncertainty Dnc/nc = nc

�1/2 is much larger when nc is small,
which is also reflected in the relative widths of the Poisson
distributions in Fig. 3a and b.

Performing the same analysis for %z = 110 nm (label B), where
nc = 880 and 88 cts per integration time, respectively, in Fig. 3a
and b, we obtain uncertainties in z of 3.4 nm and 10.7 nm for
the two cases.

The uncertainty in position leads to an uncertainty in the
potential, which can be roughly estimated by

DjðnÞ ¼ @j
@z

� �
@z

@n

� �
Dn ¼ � @j

@z

� �
b�1ffiffiffi
n
p : (20)

where n is the number of scattering photons counted by the
detector within the integration time t (i.e., n = It), and thus the
photon shot noise is

ffiffiffi
n
p

. One can see that the potential
gradient qj/qz, or the force, plays a critical role in determining
how strongly photon shot noise can affect the derived potential.
For example, in the gravity-dominated region (location A) with
t = 0.1 ms where the potential changes very slowly, the height
uncertainty is as large as 15 nm, but the noise-corrupted
potential curve still shows good agreement with the theoretical
prediction. By contrast, in the sharp electrostatic repulsion
region (location B), where the potential changes quickly, the
height uncertainty is about 10.7 nm, but the noise-corrupted
intensities do not provide a faithful representation of the
potential shape, leading to the broadening of the resultant
potential profile.

To further demonstrate the effect of potential sharpness on
measurement tolerance against photon shot noise, we increase
the salt concentration to 140 mM in the simulation, creating a
much sharper potential in the double-layer repulsion region
with a Debye length of 0.82 nm. Fig. 4 shows the effect of shot
noise on the intensity histograms when t is 1 ms and 0.1 ms in
panels (a) and (b), respectively. In this case, the potential is so
sharp that neither choice of integration times provides a
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completely faithful measurement of the interaction potential.
Nevertheless, using the shorter integration time of t = 0.1 ms
yields significantly poorer results than using t = 1 ms, as shown
in Fig. 4c and d.

In Fig. 5, we summarize the fitting parameters extracted
from our simulated TIRM data for integration time intervals
spanning the range from t = 0.025 ms to 1000 ms for the two
monovalent salt concentrations considered above: 0.5 mM, which
gives a soft repulsive potential with k�1 = 13.7 nm, and 140 mM,
which gives a hard repulsive potential with k�1 = 0.82 nm.

Fig. 5a and b show that the buoyant weight G is well fit over a
broad range of t. This reflects the fact that the potential does
not vary sharply in the large-distance (z \ 30 nm) gravity-
dominated part of the potential from which the fitted value of G
is extracted.

By contrast, Fig. 5c shows that the Debye length k�1 is well
fit only over a relatively narrow range, 1 ms o t o 25 ms for a
soft repulsive potential with k�1 = 13.7 nm while Fig. 5d shows
that k�1 is not well fit at all for a hard repulsive potential with
k�1 = 0.82 nm, except near t = 30 ms where different offsetting
errors, which we discuss next, accidentally cancel.

The errors in the fitted values of G and k�1 for the smaller
values of t arise from the photon counting shot noise, which

broadens the intensity distribution N(I) and thus broadens the
potential. This decreases the fitted values of G and increases
the fitted values of k�1. The errors in the fitted values of G and
k�1 for the larger values of t arise from particles diffusing
too far—particle dynamics, which suppresses the wings of the
intensity distribution N(I), making the potential sharper,
increasing the fitted value of G, and decreasing the fitted value
of k�1.

As a check on our simulations, potentials extracted from
both simulated and real experimental data are compared for
the case k�1 = 13.7 nm in Fig. S5 in the ESI,† for a wide range of
integration times t. We find that the simulated data sets agree
very well with real experimental data and are fully consistent
with the fitting parameters shown in Fig. 5a and c.

The data sets analyzed in Fig. 5 serve as a cautionary note for
interpreting the potentials obtained in TIRM experiments.
Thus, one may ask how to determine if the potentials obtained
using TIRM are artificially broadened or narrowed. A simple
way to check if the photon shot noise is broadening the
potentials is to plot the Poisson distributions on the intensity
histograms and compare their width to the slope of N(I) as we
have done in Fig. 3a, c and 4a, c. While this is helpful in
determining whether t is too small such that shot noise is

Fig. 4 Scattering intensity histograms from a simulation of an 8.0 mm-diameter PS sphere in 140 mM monovalent saline solution with a photon counting
time interval t of (a) 1 ms and (b) 0.1 ms. The solid orange and empty blue bars show histograms P(n) and P(nc) obtained with and without shot noise,
respectively. The solid black curves show the Poisson distributions when the means in panel (a) are %n = 600 and 1080 counts and in panel (b) are %n = 60
and 108 counts. The widths of the Poisson distributions are indicated by vertical gray lines drawn at n ¼ �n�

ffiffiffi
�n
p

in panels (a) and (b). The potential curves
are calculated with t equal to (c) 1 ms and (d) 0.1 ms. The solid orange and empty blue circles show potential curves obtained with and without shot noise
included, respectively. The dotted lines show the potential curve used in the simulation.
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broadening N(I), it does not aid in determining if t is too long
so that particle dynamics are narrowing N(I). The best results
are obtained when these two regimes of shot noise and dynamics-
limited data are well separated, as they are in Fig. 5a and c when
the potential is relatively soft. In this case, there is a range of
values of t that give nearly identical results; here that occurs for
1 ms o t o 25 ms.

3.4 Effect of shot noise on measurement of potential wells:
Morse potential

In this section, we investigate the effect of shot noise on the
measurement of a short-range attractive interaction. Such
potentials are common in interacting particle systems and
include the depletion interaction,28 attractive electrostatic,29,30

Casimir,9 and the interaction between DNA-coated colloids.10,31

The range of these attractions goes from about a nanometer to
hundreds of nanometers.

To model a generic attractive interaction, we choose a Morse
potential as our model potential, as it is frequently used to
describe attractive interactions between colloidal particles:32,33

j(z) = e[e�2(z�z0)/a � 2e�(z�z0)/a]. (21)

It has a depth of e that occurs at a height z0; the width and
stiffness of the potential well are conveniently set by a.

Consider a colloidal sphere that has close-range attractive
interactions with the glass surface. Its potential energy j(z)

can be written a combination of the Morse potential and
gravitation:

j(z) = e[e�2(z�z0)/a � 2e�(z�z0)/a] + Gz. (22)

For TIRM, we need to choose a reference height zr, which we
take to be z0. With this choice,

j(z) � j(z0) = e[e�2(z�z0)/a � 2e�(z�z0)/a + 1] + G(z � z0),
(23)

Using the Brownian dynamics simulation method intro-
duced in Section 3.1, we simulate the height trajectories of a
5 mm PS particle with a Morse potential energy profile. Fig. 6
shows the Morse potential simulation results with a = 10 nm
and e = 5kBT. Eqn (22) is plotted as a gray dotted line in Fig. 6.

We carry out simulations using different photon-counting
integration time intervals t. Fig. 6 shows results for two values
of t: 0.1 ms and 10 ms.

When t = 10 ms, the light scattering intensity distribution
N(I) is essentially indistinguishable from what one would
obtain in the absence of photon counting shot noise, as can
be seen in Fig. 6a. In this case, the potential obtained from the
usual TIRM analysis corresponds closely to the true potential,
as can be seen in Fig. 6b.

When t is reduced to 0.1 ms, however, the intensity distri-
bution N(I) is blurred considerably, particularly when the
particle is in the vicinity of the potential minimum, as shown

Fig. 5 Simulated interaction parameters of an 8 mm-diameter PS sphere in (a and c) 0.5 mM and (b and d) 140 mM monovalent salt. (a and b) Fitted
buoyant weight G and (c and d) Debye length k�1 from potential profiles simulated with different t. Blue circle are fitted parameters without considering
of photon counting uncertainties. Dotted lines are the theoretical values of the expected parameter. (d) Insets in (c) and (d) show the same respective
plots in y-log scale.
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in Fig. 6a. As a consequence, the potential obtained from the
TIRM analysis is broadened considerably. The depth of the
potential is also reduced.

To better quantify the effect of t on potential well measure-
ments, we simulate Morse potentials with varying widths,
taking a as 1, 2, 5, 10, 15, and 20 nm. For each value of a, we
use different values t to simulate different TIRM data sets from
which we extract a measured potential. We characterize the
potential well inferred from a TIRM measurement by two
parameters: the well depth and width. To characterize the well
depth and width, we first subtract the contribution from
gravity, G(z � z0), from the potential (see Fig. S6 in ESI†).
We define the characteristic width as the full width at half
maximum (FWHM).

Fig. 7a shows the potential width (FWHM) measured from
the simulated TIRM data as a function of t for different values
of a. The gray horizontal dotted lines indicate the true FWHM =
1.763a for each value of the width parameter a. For each of the
wider Morse potentials with a = 20, 15, and 10 nm, there is
a clear plateau over a range of integration times t near the

expected width. One can discern evidence of an incipient
plateau for a = 5 nm, but all evidence of a plateau vanishes
for the smaller values of a. Nevertheless, even below a = 5 nm,
the measured width is different for different values of a for a
given choice of t, indicating that even in this limit TIRM can be
expected to follow changes in the width of the potential.

Fig. 7b shows the simulated potential depth obtained using
different values of t. Here we see that the correct potential
depth is obtained only for a somewhat narrower range of t
centered around a few milliseconds, where there is a mild
plateau, again for wells wider than about 5 nm. Thus, correct
measurements of the well depth and width can be obtained,
but only for a somewhat narrow range of t. The proper range of
t can be identified by the existence of a plateau.

4 Conclusions

In this paper, we establish the critical role of shot noise and
intensity integration time t in TIRM measurements of colloidal
interaction potentials. Sharp potential profiles, e.g. steric
repulsion,6 depletion,7 strong double-layer repulsion20 and

Fig. 6 (a) Histogram of simulated scattered intensities of a 5 mm-diameter
PS particle with Morse potential profile (e = 5kBT, a = 10 nm, z0 = a). Step
size is 5 ms with 5 � 108 steps. Imax = 1 MHz. Grey bars are intensities from
original simulated trajectories without account for shot noise or photon
counting interval (effectively t = Dt). Blue, purple bars correspond to
intensities with t being 0.1 ms and 10 ms respectively. Inset shows the
same plot in y-log scale. (b) Potential curves corresponding to the con-
ditions in (a) when t = 0.1 ms (blue), 10 ms (purple) and 5 ms (grey, no shot
noise). Potential minimum is placed at 0kBT and height at 0 nm.

Fig. 7 Simulated 5kBT deep Morse potentials with different a and the
corresponding apparent potential width (FWHM) (a) and depth (b) when
using different t. Horizontal colored dotted lines in (a) and gray dashed line
in (b) indicate the theoretical width or depth for the Morse potentials.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
7 

N
ov

em
be

r 
20

21
. D

ow
nl

oa
de

d 
on

 7
/8

/2
02

2 
6:

16
:4

1 
PM

. 
View Article Online

https://doi.org/10.1039/d1sm01587g


This journal is © The Royal Society of Chemistry 2022 Soft Matter, 2022, 18, 162–171 |  171

short-range attraction,10,34 are particularly prone to corruption
by shot noise. Shot noise should be taken into consideration
when interpreting such measured potential profiles. While shot
noise cannot be removed by deconvolution, the expected signal-
to-noise ratio can be experimentally controlled by selecting the
photon counting time interval.

The choice of photon counting time interval is a trade-off
between minimizing shot noise and preserving temporal reso-
lution. For smaller values of t, the temporal resolution of the
simulated measurement is sufficient to resolve the particle
movement. However, small t increases the shot noise and
tends to blur the sharp features of a potential curve. For large
t, shot noise is reduced due to the increased number of
photons counted. However, the measured scattering intensity
is averaged over large particle displacements, which can distort
the potential profiles for excessively large t. If spatial gradients
qj/qz in the potential are not too large, there can be a regime of
intermediate values of t for which the intensity distribution N(I)
is accurately measured without significant distortion. In this
case, the potential j(z) can be faithfully measured by TIRM.
Even in cases where the photon counting shot noise cannot be
reduced to the point that it does not broaden the sharp features
in j(z), useful information can be extracted about the potential.
In particular, changes in j(z) due to changing sample conditions
(temperature, salt concentration, etc.) can be readily discerned.
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