top of page

Peer-Reviewed Publications

(* indicates equal contribution)

[13] Cui, F.*, Marbach, S.*, Zheng, J., M. Holmes-Cerfon, M. & Pine, D. Comprehensive view of nanoscale interactions between DNA-coated colloids. Nat. Commun. 13, 2304, (2022). (Featured in Nature Communications Editors’ Highlights)

[12] Cui, F. & Pine, D. Effect of photon counting shot noise on total internal reflection microscope. Soft Matter 18, 162 (2022).

[11] Liu, Y., Siron, M., Lu, D., Dos Reis, R., Cui, F., Gao, M., Lai, M., Lin, J., Kong, Q., Lei, T., Kang, J., Jin, J., Ciston, J. & Yang, P. Self-assembly of two-dimensional perovskite nanosheet building blocks into ordered Ruddlesden–Popper perovskite phase. J. Am. Chem. Soc. 141, 13028 (2019).

[10] Niu, Z.*, Cui, F.*, Kuttner, E., Xie, C., Chen, H., Sun, Y., Dehestani, A., Schierle-Arndt, k. & Yang, P. Synthesis of silver nanowires with reduced diameters using benzoin-derived radicals to make transparent conductors with high transparency and low haze. Nano Lett. 18, 5329 (2018).

[9] Lin, J.*, Lai, M.*, Dou, L., Kley, C. S., Chen, H., Peng, F., Sun, J., Lu, D., Hawks, S. A., Xie, C., Cui, F., Alivisatos, A. P., Limmer, D. & Yang, P. Thermochromic halide perovskite solar cells. Nat. Mater. 17, 261 (2018).

[8] Cui, F., Dou, L., Yang, Q., Yu, Y., Niu, Z., Sun, Y., Liu, H., Dehestani, A., Schierle-Arndt, K., & Yang, P. Benzoin radicals as reducing agent for synthesizing ultrathin copper nanowires. J. Am. Chem. Soc. 139, 3027 (2017).

[7] Niu, Z.*, Cui, F.*, Yu, Y., Becknell, N., Sun, Y., Khanarian, G., Kim, D., Dou, L., Dehestani, A., Schierle-Arndt, K., & Yang, P. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors. J. Am. Chem. Soc. 139, 7348 (2017).

[6] Li, Y.*, Cui, F.*, Ross, M., Kim, D., Sun, Y., & Yang, P. Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin five-fold twinned copper nanowires. Nano Lett. 17, 1312 (2017).

[5] Dou, L.*, Cui, F.*, Yu, Y., Khanarian, G., Eaton, S., Yang, Q., Resasco, J., Schildknecht, C., Schierle, K. & Yang, P. Solution-processed copper reduced-graphene-oxide core-shell nanowire transparent conductors. ACS Nano 10, 2600 (2016).

[4] Sun, J.*, Cui, F.*, Kisielowski, C., Yu, Y., Kornienko, N. & Yang, P. Low-temperature solution-phase growth of silicon and new silicon-containing alloy nanowires. J. Phys. Chem. 120, 20525 (2016).

[3] Yu, Y., Cui, F., Sun, J. &Yang, P. Atomic structure of ultrathin gold nanowires. Nano Lett. 16, 3078 (2016).

[2] Cui, F., Yu, Y., Dou, L., Sun, Yang, Q., Schildknecht, C., Schierle-Arndt, K. & Yang, P. Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high performance and low-haze transparent conductors. Nano Lett. 15, 7610 (2015).

[1] Nan, W., Niu, Y., Qin, H., Cui, F., Yang, Y., Lai, R., Lin, W. & Peng, X. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 134, 19685 (2012).

Patents

[4] Yang, P., Niu, Z. & Cui, F. Conductive Core-Shell Metal Nanowires for Transparent Conductors, WO2018140226. Publish date: Aug. 02, 2018.

[3] Yang, P., Cui, F. & Dou, L. Synthesis of Ultra-Thin Metal Nanowires Using Organic Free Radicals, WO2017210026. Publish date: Dec. 07, 2017.

[2] Yang, P., Dou, L. & Cui, F. Transparent conductors, WO2017048923A1. Publish date: Mar. 23, 2017

[1] Yang, P., Sun, J., Yu, Y. & Cui, F. Methods to produce ultra-thin metal nanowires for transparent conductors, WO2016049430. Publish date: Mar. 31, 2016.

bottom of page